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ABSTRACT 

In this article, we present an approach for organ 
approximation in low contrast CT data of mice using a 
whole-body mouse atlas (Segars et al. [1]). Starting from 
a set of landmarks on bone and joint locations, further 
correspondences are derived on surface representations of 
the lung by atlas-based registration and on the skin by 
employing a local geodesic shape context. Subsequently, 
landmarks on the skeleton, the lung and the skin are used 
to constrain a Thin-Plate-Spline (TPS) based mapping of 
major organs from the atlas to the subject domain. 
The feasibility of the method has been tested by means of 
26 CT mouse datasets and a different whole-body mouse 
atlas (Digimouse [2]). Proper mapping of the lung and the 
skin as well as major organs could be achieved in all 
cases yielding a mean Euclidean distance between surface 
nodes of 0.42  0.068 mm for the lung and 0.34  0.036 
mm for the skin. The performance of the organ 
interpolation has been assessed on basis of manual 
segmentations of two CT datasets of mice with injected 
contrast agent and the Digimouse. The calculated dice 
indices of volume overlap show significant improvement 
compared to earlier studies. 
 

Index Terms— Geodesic shape context, CT, TPS 
approximation, whole-body segmentation 

1. INTRODUCTION 

The availability of small animal whole-body imaging 
modalities ( CT and MRI) adds a new dimension to 
animal experiments. It enables monitoring dynamic 
processes in-vivo, within a population and at subsequent 
time points, i.e. cross-sectional and longitudinal studies. 
To be able to quantify disease and developmental 
processes in whole-body scans, it is necessary to capture 
and match the body as a whole. Also, in applications such 
as Bioluminescence Tomography, whole-body tissue 
models are required to improve the accuracy of light 
source reconstruction algorithms [3]. However, an animal 
body is a very complex system because it contains stiff 
(rigid) structures like bones next to elastic (non-rigid) 

structures like organs. This is further complicated by the 
fact that the body contains many articulated parts. As a 
result, the shape and the posture can vary significantly 
among animals and among acquisition time points. 
Two strategies for matching objects with heterogeneous 
stiffness properties can be found in the literature: data-
driven and model-driven approaches. Whole-body 
registration methods so far are all data-driven and 
therefore cannot handle large differences in posture and 
shape (Chaudhari et al.[4], Li et al. [5], Kovacevic et al. 
[6]). On the other hand, the model-driven approaches 
have been applied to subparts of a body only (Martin-
Fernandez et al. [7], Papademetris et al. [8], Du Bois 
d'Aische et al. [9]). In addition, most methods need a 
significant amount of user interaction e.g. to define joint 
locations or segment bones prior to registration. 
To be able to capture arbitrary shape and posture 
variations among subjects, we earlier presented a method 
to automatically register the entire skeleton of a subject 
by means of an articulated atlas [10]. Determination of 
whole-body posture and shape is based on the skeleton 
because it is the main determinant of whole-body posture. 
Furthermore at many locations of the animal body, as in 
the vicinity of the spine and the ribcage, organ location 
and extent are closely related to the skeleton. 
Due to the high radiodensity of bone, CT allows robust 
automated extraction of the skeleton from the data. 
However, most soft tissue areas in the animal body show 
only little contrast. As a result, intensity feature-based 
registration between an atlas and the subject is not 
possible for most soft tissues. However the atlas contains 
all major organs, which can therefore be mapped from the 
atlas to the subject domain. To this end, TPS [11] 
interpolation can be used, because this has proven to be 
suitable for biological applications. The necessary set of 
corresponding landmarks can be derived mainly from the 
skeleton except for the ventral and lateral abdomen, due 
to the missing bone content. Thus further lateral 
landmarks are needed to preserve body shape. 
 
The contributions of this work are as follows: 
 

 We present a method to derive a dense point 
correspondence on the lung and the skin, starting 
from a set of sparse bone landmarks. 
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 Based on this correspondence, we present a 
landmark-constrained TPS mapping of major 
organs from the mouse atlas to the subject that 
yields an approximation of organ position and 
extent. 

2. METHODOLOGY 

Besides bone, also the lung and the skin show sufficient 
contrast to enable robust segmentation from CT data. The 
registered skeleton allows initializing subsequent lung 
registration. Furthermore a sparse set of corresponding 
skin landmarks can be derived, since at many locations in 
the animal body, skin is very close to the skeleton. Based 
on this, a dense set of corresponding landmarks can be 
derived and together with the bone and lung landmarks be 
used to constrain a TPS based organ interpolation. 

2.1. Determination of correspondences on the lung 

The shape of the lung is strongly spatially constrained by 
the spine, the sternum and the ribs but still varies 
significantly between specimens. The choice of the 
registration strategy is a trade-off between speed and 
accuracy. Pilot experiments showed that rigid registration 
between atlas and subject lung allowing non-isotropic 
scaling to account for breathing does give satisfactory 
results. Correspondence is established using Iterative 
Closest Point matching (ICP [12]), based on the 
Euclidean distance between two surfaces as the error 
criterion. 

2.2. Derivation of correspondences on the skin 

Establishing correspondence between two skin surfaces in 
the most general case is very difficult. This is because 
dependent on how the animal is placed during acquisition, 
the shape can be almost rotation-symmetric to the 
longitudinal axis of the body, symmetric to the sagittal 
plane or symmetric to the transverse plane. Furthermore, 
the shape of an animal can differ significantly e.g. if two 
mice are positioned in prone and supine position 
respectively. The first issue can be resolved directly, if a 
registered skeleton is at hand. Then it is possible to 
determine a sparse set of corresponding landmarks on the 
surface of the animal skin by calculating the nodes with 
the smallest Euclidean distance from a set of bone 
landmarks. Having defined a sparse landmark set allows 
removing ambiguity during matching. 
The second issue can be resolved by relying on a local 
shape context to identify corresponding nodes. The idea 
of matching shapes based on global shape contexts has 
been introduced by Belongie et al. [13]. However to be 
able to take local shape deformation into account, the 
representation has to be bending invariant. Using 
geodesic instead of Euclidean distances in a local context 
allows rendering the representation rotation, translation 

and bending invariant. While in general not scaling 
invariant, different animal sizes can be accounted for by 
normalization of the geodesic distances. 
Let P = {p1 … pn} and Q = {q1 … qm} be the nodes of 
two surfaces to be matched and hi and hj be the 
histograms of geodesic distances from nodes pi on P and 
qj on Q to other nodes of the surface. The procedure of 
finding dense correspondence on the skin is as follows: 
 

1. Initialize a list with corresponding skin nodes that are 
known (landmarks derived from skeleton registration) 

 
Repeat for all elements in the correspondence list: 
 
2. Select all nodes on P and Q in the vicinity (i.e. 

between a maximum and minimum geodesic distance 
and with a minimum distance to already known 
correspondences as shown in Figure 1, top) of the next 
element on the list 

3. Calculate a local shape context based on geodesic 
distances towards K known corresponding nodes for 
the selected nodes in P and Q 

 
Repeat steps 4-7 until no selected nodes are left: 
 
4. Calculate the cost for matching two nodes pi and qj 

using the 2 test statistic [13]. hi(k) and hj(k) are 
histograms of geodesic distances: 
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5. Find the best match as min(Cij) 
6. Add the found match to the list of correspondences 
7. Remove the selected nodes whose geodesic distance to 

the newly found correspondence is too small 
 
Due to the discretization of the surfaces, detected 
correspondences are generally not exact. To avoid the 
accumulation of small localization errors while 
progressing over the surface, determination of 
corresponding nodes should start at a coarse scale (in 
terms of inter-node distance) and, dependent on the 
amount of detail to be captured, continue at a smaller 
scale e.g. as proposed in Wang et al. [14]. 

2.3. TPS approximation of the organs 

Based on landmarks on bone, lung and skin, organs can 
be warped from the atlas domain to the subject domain. 
In its original form i.e. if used as an interpolant, the TPS 
does force landmarks in the source domain to fit 
landmarks in the target domain exactly. However in 
general small spatial errors may occur and this can cause 
local distortions of the mapping. A remedy is to allow 
small landmark localization errors and relax the constraint 
of interpolation towards approximation (thin-plate 
smoothing spline [15]). 

1268



3. EXPERIMENTAL RESULTS 

To validate the method for determination of lung and skin 
correspondences, 3D data volumes were acquired of 26 
mice in-vivo with a Skyscan 1178 CT scanner (Kontich, 
Belgium). Animals were placed in prone and supine 
position with arbitrary limb position. The data was sub-
sampled and smoothed yielding a voxel size of 320 x 320 
x 320 m3 [10]. Surface representations of the skin and 
the lung have been generated automatically using labeled 
data volumes after thresholding and seeded region 
growing respectively. The lung surface has been 
registered using ICP and Levenberg-Marquardt 
minimization, initialized by landmarks on the spine and 
the sternum. The registration error (the mean Euclidean 
distance between surface nodes for 26 cases) decreased 
from 1.76  0.49 mm to 0.42  0.068 mm. For deriving 
correspondences on the skin surface we use a triangulated 
skin representation with 2000 nodes and a sparse set of 32 
landmarks, derived from the joints, the spine and the 
skull. Geodesic distances were determined using the Fast 
Marching Algorithm [16] and the error criterion was 
based on the eight closest landmarks (i.e. K=8). The 
initial set was replenished by 120 landmarks from the 
skin all over the body and 30 landmarks on the lung, 
yielding a total set of 182 corresponding nodes (Figure 

1, bottom) to constrain the TPS approximation. Note that 
for searching landmarks on the skin, the distal ends of the 
limbs have been excluded for this experiment since they 
do not contribute to the shape of organs. The mean 
Euclidean distance between atlas and subject skin nodes 
after the mapping including all 26 cases was 0.34  0.036 
mm. Results of two mice are shown in Figure 2. 
To validate the organ approximation method, two mice 
with different contrast agents (Iomeron 400 [17], Fenestra 
LC [18]) have been scanned using CT and the datasets 
were manually segmented (Amira V3.1, Mercury 
Computer Systems) by an expert. Quantitative assessment 
was performed by calculating dice indices of volume 
overlap for these two mice and the Digimouse atlas. The 
stomach, the spleen and the intestines have not been 
considered, due to the very large environmentally 
dependent variability of shape and location. 
The manually segmented mice as well as the organ 
approximation used for derivation of dice indices are 
presented in Figure 3 and the results given in Table 1. 
Note that for the Digimouse we generated a virtual CT 
dataset based on the labeled volume to employ the same 
skin and lung extraction method as for the other datasets, 
because the labels are not registered to the raw CT data. 
Registration of the lung, derivation of skin landmarks and 
organ approximation were implemented in Matlab 2007b 
and processing time was 2min on a standard desktop PC. 
 

 
Figure 1: Possible new correspondences 
(red) based on a known landmark on the 
chest (arrow). Bottom: net of sparse (blue) 
and dense (red) correspondences 
 

Figure 2: Organ approximation results. The subject skeleton is shown in grey and 
the atlas skeleton in red. The organs are brain (green), lung (yellow), heart (red), 
liver (grey), stomach (light blue), spleen (green) and kidneys (dark blue) 
 

 Mouse in prone position Mouse in supine position Digimouse Chaudhari et al. [4] 
 Volume subject 

(mm3) 
Volume 

atlas 
Dice 
index 

Volume 
subject 

Volume 
atlas 

Dice 
index 

Volume 
subject 

Volume 
atlas 

Dice 
index Dice index 

Skeleton 427.15 353.80 0.69 436.26 337.77 0.75 381.66 300.12 0.67 0.1572 
Brain 325.03 421.20 0.76 352.67 433.11 0.81 359.47 386.81 0.88 0.7047 
Heart 251.88 252.65 0.81 290.38 328.73 0.61 224.27 162.60 0.65 0.4673 
Lung 465.41 519.68 0.70 721.89 696.00 0.82 383.26 314.96 0.75 0.4871 
Liver 1332.81 1930.26 0.73 2140.86 2057.26 0.80 2007.07 1615.46 0.75 0.6508 

Kidneys 354.83 210.17 0.48 392.76 265.71 0.60 495.10 300.82 0.60 0.4363 
 
Table 1: Dice indices (2*(Vs Va)/(Vs+Va)) for the skeleton (except spine and skull) and major organs 
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Figure 3: Manual segmentation (top row) versus automated skeleton registration and organ approximation (bottom row) 
for mice in prone (left column) and supine (middle column) position and for the Digimouse (hind paws are not included) 

 

4. DISCUSSION AND CONCLUSION 

While the skeleton registration has been validated 
elsewhere [10] we show here that the chosen registration 
for the lung and the subsequent derivation of landmarks 
on the skin leads to a close approximation of both with 
errors in the data resolution range, for all 26 cases. The 
calculated dice indices of volume overlap outperform 
previously documented results [4], especially for the 
skeleton. Above that, animals have been positioned 
during acquisition such that they significantly differed in 
posture and shape compared to each other and in 
particular compared to the used atlas and the Digimouse. 
Detailed investigation of the dice indices leads to several 
observations. First, the difference in lung volume is 
relatively large for the Digimouse atlas. This is because 
using automated lung segmentation for the virtual CT 
dataset leads to an overestimation of the Digimouse lung. 
Since the heart approximation is greatly constrained by 
landmarks on the lung, its volume is underestimated for 
this dataset. Though the dice indices for the skeleton are 
high, its volume is systematically underestimated, since 
down-sampling and smoothing renders the joints as bone 
content. Therefore the joints contribute to the skeleton 
volume as well. Investigation of the approximated 
kidneys reveals occasional underestimation of their 
volume. The reason for this is the almost round cross 
section of the mouse atlas torso and the usually more 
elliptic cross-section of a subject torso. If the round torso 
has to be deformed to an ellipse, everything in between is 
squeezed, regardless if this is anatomically realistic or not. 
In conclusion, the presented method is applicable for 
referencing of internal processes in molecular imaging 
research or whole-body segmentation (e.g. to provide a 
heterogeneous tissue model for bioluminescence 
tomography). Furthermore, the approximation result 
could also serve to initialize a subsequent highly accurate 
registration of a specific bone or organ of interest, as long 
as the image data shows sufficient contrast. For CT data 

this might be realized using a suitable contrast agent. In 
return, the approximation could be improved using organ 
registration results of e.g. the kidneys. 
In the future, the method will be validated on a larger 
dataset of mice with injected contrast agent. In addition, 
we plan to generalize the whole-body registration to other 
modalities as well. Thereby the focus will not only be on 
volumetric data (MRI or SPECT) but also on photographs 
from the subject surface (mono- or biplanar) for posture 
estimation, using skeleton based motion constraints. 
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